Forecasting with Medium and Large Bayesian VARs
نویسنده
چکیده
This paper is motivated by the recent interest in the use of Bayesian VARs for forecasting, even in cases where the number of dependent variables is large. In such cases, factor methods have been traditionally used but recent work using a particular prior suggests that Bayesian VAR methods can forecast better. In this paper, we consider a range of alternative priors which have been used with small VARs, discuss the issues which arise when they are used with medium and large VARs and examine their forecast performance using a US macroeconomic data set containing 168 variables. We nd that Bayesian VARs do tend to forecast better than factor methods and provide an extensive comparison of the strengths and weaknesses of various approaches. Our empirical results show the importance of using forecast metrics which use the entire predictive density, instead of using only point forecasts.
منابع مشابه
Forecasting with Dimension Switching VARs
This paper develops methods for Bayesian VAR forecasting when the researcher is uncertain about which variables enter the VAR and the dimension of the VAR may be changing over time. It considers the case where there are N variables which might potentially enter a VAR and the researcher is interested in forecasting N∗ of them. Thus, the researcher is faced with 2N−N ∗ potential VARs. If N is lar...
متن کاملEco 2009/31 Department of Economics Forecasting Large Datasets with Bayesian Reduced Rank Multivariate Models
The paper addresses the issue of forecasting a large set of variables using multivariate models. In particular, we propose three alternative reduced rank forecasting models and compare their predictive performance for US time series with the most promising existing alternatives, namely, factor models, large scale Bayesian VARs, and multivariate boosting. Speci cally, we focus on classical reduc...
متن کاملPrior selection for panel vector autoregressions
There is a vast literature that speci es Bayesian shrinkage priors for vector autoregressions (VARs) of possibly large dimensions. In this paper I argue that many of these priors are not appropriate for multi-country settings, which motivates me to develop priors for panel VARs (PVARs). The parametric and semi-parametric priors I suggest not only perform valuable shrinkage in large dimensions, ...
متن کاملBayesian Rank Selection in Multivariate Regression
Estimating the rank of the coefficient matrix is a major challenge in multivariate regression, including vector autoregression (VAR). In this paper, we develop a novel fully Bayesian approach that allows for rank estimation. The key to our approach is reparameterizing the coefficient matrix using its singular value decomposition and conducting Bayesian inference on the decomposed parameters. By...
متن کاملForecasting with Small Macroeconomic VARs in the Presence of Instabilities
Small–scale VARs are widely used in macroeconomics for forecasting U.S. output, prices, and interest rates. However, recent work suggests these models may exhibit instabilities. As such, a variety of estimation or forecasting methods might be used to improve their forecast accuracy. These include using different observation windows for estimation, intercept correction, time–varying parameters, ...
متن کامل